In an elastic collision of two particles the following quantity is conserved
Momentum of each particle
Speed of each particle
Kinetic energy of each particle
Total kinetic energy of both the particles
Two bodies with masses $M_1$ and $M_2$ have equal kinetic energies. If $p_1$ and $p_2$ are their respective momenta, then $p_1/p_2$ is equal to
Adjacent figure shows the force-displacement graph of a moving body, what is the work done by this force in displacing body from $x = 0$ to $x = 35\,m$ ? ........... $\mathrm{J}$
Two blocks $A$ and $B$ of masses $1\, kg$ and $2\, kg$ are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to strech the spring and then released. The ratio of $K.E.s$ of both the blocks is
A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.
With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.
$(a)$ For which balls is total mechanical energy conserved ?
$(b)$ Which ball $(s)$ can reach $D$ ?
$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?
A body of mass $1\, kg$ is thrown upwards with a velocity $20\, m/s$. It momentarily comes to rest after attaining a height of $18\, m$. How much energy is lost due to air friction ............. $\mathrm{J}$ $(g = 10\, m/s^2)$