In a circle with radius $14 \,cm ,$ the area of minor sector corresponding to minor $\widehat{ ACB }$ is $77 \,cm ^{2}$. Then, minor $\widehat{ ACB }$ subtends an angle of measure $\ldots \ldots \ldots \ldots$ at the centre.
$30$
$60$
$90$
$45$
The closed figure formed by an arc of a circle and the radii through its end points is called .........
In a circle with centre $O, \overline{O A}$ and $\overline{O B}$ are radii perpendicular to each other. The perimeter of the sector formed by these radii is $75\, cm$. Find the area of the corresponding minor segment. (in $cm^2$)
In a circle with radius $10\,cm$, the area of a minor sector is $40\,cm ^{2}$. Then, the length of the arc corresponding to that circle is $\ldots \ldots \ldots \ldots cm$.
If the sum of the circumferences of two circles with radii $R_{1}$ and $R_{2}$ is equal to the circumference of a circle of radius $R ,$ then
In $Fig.$, a square is inscribed in a circle of diameter $d$ and another square is circumscribing the circle. Is the area of the outer square four times the area of the inner square? Give reasons for your answer.