In a certain region of space, variation of potential with distance from origin as we move along $x$-axis is given by $V=8 x^2+2$, where $x$ is the $x$-coordinate of a point in space. The magnitude of electric field at a point $(-4,0)$ is .......... $V / m$
$-16$
$16$
$-64$
$64$
A charge of $5\,C$ experiences a force of $5000\,N$ when it is kept in a uniform electric field. .........$V$ is the potential difference between two points separated by a distance of $1\,cm$
What is potential gradient ?
Consider a gravity free container as shown. System is initially at rest and electric potential in the regon is $V = (y^3+2)\ J/C$. A ball of charge $q$ and mass $m$ is released from rest from base starts to move up due to electric field and collides with the shaded face as shown.If its speed just after collision is $1.5\ m/s$ and time for which ball is in contact with shaded face is $0.1\ sec$, find external force required to hold the container fixed in its position during collision assuming ball exerts constant force on wall during entire span of collision.......$N$
The potential (in volts ) of a charge distribution is given by
$V(z)\, = \,30 - 5{z^2}for\,\left| z \right| \le 1\,m$
$V(z)\, = \,35 - 10\,\left| z \right|for\,\left| z \right| \ge 1\,m$
$V(z)$ does not depend on $x$ and $y.$ If this potential is generated by a constant charge per unit volume $\rho _0$ (in units of $\varepsilon _0$ ) which is spread over a certain region, then choose the correct statement
The electric potential at a point $(x, y, z)$ is given by $V=-x^2y-xz^3 +4 $. The electric field at that point is