In  $[0, 1]$ Lagrange's mean value theorem is $ NOT$  applicable to

  • [IIT 2003]
  • A

    $f(x) = \left\{ {\begin{array}{*{20}{c}}
      {\frac{1}{2} - x,\,\,\,\,\,\,\,\,\,x < \frac{1}{2}} \\ 
      {{{\left( {\frac{1}{2} - x} \right)}^2},\,x \geqslant \frac{1}{2}} 
    \end{array}} \right.$

  • B

    $f(x) = \left\{ {\begin{array}{*{20}{c}}
      {\frac{{\sin x}}{x}\,\,x \ne 0} \\ 
      {1,\,\,\,\,\,\,\,\,x = \frac{1}{2}} 
    \end{array}} \right.$

  • C

    $f(x) = x|x|$

  • D

    $f(x) = |x|$

Similar Questions

If $f:[-5,5] \rightarrow \mathrm{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5).$

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............

If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has

If for $f(x) = 2x - {x^2}$, Lagrange’s theorem satisfies in $[0, 1]$, then the value of $c \in [0,\,1]$ is

If $f$ is a differentiable function such that $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ then minimum number of roots of the equation $f'(x) = 0$ in $x \in \left( { - 5,10} \right)$ ,given that $f(2) = f(5) = f(10)$ , is