If vectors $\overrightarrow {A} = cos\omega t\hat i + sin\omega t\hat j$ and $\overrightarrow {B} = cos\frac{{\omega t}}{2}\hat i + sin\frac{{\omega t}}{2}\hat j$ are functions of time, then the value of $t$ at which they are orthogonal to each other is
$t=0$
$t=$$\;\frac{\pi }{{4\omega }}$
$t=$$\;\frac{\pi }{{2\omega }}$
$t=$$\;\frac{\pi }{\omega }$
Which is the direction of instantaneous velocity for angular path ?
The length of second's hand in watch is $1 \,cm.$ The change in velocity of its tip in $15$ seconds is
A projectile is fired from horizontal ground with speed $v$ and projection angle $\theta$. When the acceleration due to gravity is $g$, the range of the projectile is $d$. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is $g^{\prime}=\frac{g}{0.81}$, then the new range is $d^{\prime}=n d$. The value of $n$ is. . . . .
A swimmer dived off a cliff with a running horizontal leap. What must his minimum speed be just as he leaves the top of the cliff so that he will miss the edge at the bottom ....... $m/s$ is $2\ m$ wide and $10\ m$ belows the top of the cliff .