If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $6$

Similar Questions

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]

The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is

  • [JEE MAIN 2019]

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :

  • [JEE MAIN 2018]

If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is