If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
$\left( { \vee , \wedge } \right)$
$\left( { \vee , \vee } \right)$
$\left( { \wedge , \vee } \right)$
$\left( { \wedge , \wedge } \right)$
The contrapositive of the statement "If I reach the station in time, then I will catch the train" is
$p \Rightarrow q$ can also be written as
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements
$(i)$ $p \leftrightarrow q$
$(ii)$ $~ p \leftrightarrow q$
$(iii)$ $~ q \leftrightarrow p$
$(iv)$ $~ p \leftrightarrow ~ q$