If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta  \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is 

  • [JEE MAIN 2019]
  • A

    $\left( { \vee , \wedge } \right)$

  • B

    $\left( { \vee , \vee } \right)$

  • C

    $\left( { \wedge , \vee } \right)$

  • D

    $\left( { \wedge , \wedge } \right)$

Similar Questions

The contrapositive of the statement "If I reach the station in time, then I will catch the train" is 

  • [JEE MAIN 2020]

$p \Rightarrow q$ can also be written as

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]

Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements

$(i)$ $p \leftrightarrow  q$ 

$(ii)$ $~ p \leftrightarrow q$

$(iii)$ $~ q \leftrightarrow p$

$(iv)$ $~ p \leftrightarrow ~ q$

Which of the following is a statement