If mass-energy equivalence is taken into account, when water is cooled to from ice. The mass of water should
increase
decrease
remains same
first increase then decrease
The density of water at $20^oC$ is $0.998\, gm/cm^3$ and at $40^oC$ is $0.992\, gm/cm^3$. The mean coefficient of cubical expansion (in per $^oC$) is :-
Steam at $100\,^oC$ is passed into $1.1\,kg$ of water contained in calorimeter of water equivalent $0.02\ kg$ at $15\,^oC$ till the temperature of the calorimeter rises to $80\,^oC$. The mass of steam condensed in kilogram is
Two thermometers $X$ and $Y$ have ice points marked at $15^o$ and $25^o$ and steam points marked as $75^o$ and $125^o$ respectively. When thermometer $X$ measures the temperature of a bath as $60^o$ on it, ..... $^oC$ would thermometer $Y$ read when it is used to measure the temperature of the same bath ?
Three rods of equal length $l$ are joined to form an equilateral triangle $PQR.$ $O$ is the mid point of $PQ.$ Distance $OR$ remains same for small change in temperature. Coefficient of linear expansion for $PR$ and $RQ$ is same, $i.e., \alpha _2$ but that for $PQ$ is $\alpha _1.$ Then
On centigrade scale the temperature of a body increases by $30$ degrees. The increase in temperature on Fahrenheit scale is ..............