If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field, then
The electron will turn to its right
The electron will turn to its left
The velocity of the electron will increase
The velocity of the electron will remain unchanged
A particle having a charge of $10.0\,\mu C$ and mass $1\,\mu g$ moves in a circle of radius $10\,cm$ under the influence of a magnetic field of induction $0.1\,T$. When the particle is at a point $P$, a uniform electric field is switched on so that the particle starts moving along the tangent with a uniform velocity. The electric field is......$V/m$
An electron having a charge e moves with a velocity $v$ in positive $x$ direction. A magnetic field acts on it in positive $y$ direction. The force on the electron acts in (where outward direction is taken as positive $z$-axis).
A particle with charge $-Q$ and mass m enters a magnetic field of magnitude $B,$ existing only to the right of the boundary $YZ$. The direction of the motion of the $m$ particle is perpendicular to the direction of $B.$ Let $T = 2\pi\frac{m}{{QB}}$ . The time spent by the particle in the field will be
A particle of charge $q$ and mass $m$ moving with a velocity $v$ along the $x$-axis enters the region $x > 0$ with uniform magnetic field $B$ along the $\hat k$ direction. The particle will penetrate in this region in the $x$-direction upto a distance $d$ equal to
A proton (or charged particle) moving with velocity $v$ is acted upon by electric field $E$ and magnetic field $B$. The proton will move undeflected if