If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field, then

  • A

    The electron will turn to its right

  • B

    The electron will turn to its left

  • C

    The velocity of the electron will increase

  • D

    The velocity of the electron will remain unchanged

Similar Questions

A particle having a charge of $10.0\,\mu C$ and mass $1\,\mu g$ moves in a circle of radius $10\,cm$ under the influence of a magnetic field of induction $0.1\,T$. When the particle is at a point $P$, a uniform electric field is switched on so that the particle starts moving along the tangent with a uniform velocity. The electric field is......$V/m$

An electron having a charge e moves with a velocity $v$ in positive $x$ direction. A magnetic field acts on it in positive $y$ direction. The force on the electron acts in (where outward direction is taken as positive $z$-axis).

A particle with charge $-Q$ and mass m enters a magnetic field of magnitude $B,$ existing only to the right of the boundary $YZ$. The direction of the motion of the $m$ particle is perpendicular to the direction of $B.$ Let $T = 2\pi\frac{m}{{QB}}$ . The time spent by the particle in the field will be 

A particle of charge $q$ and mass $m$ moving with a velocity $v$ along the $x$-axis enters the region $x > 0$ with uniform magnetic field $B$ along the $\hat k$ direction. The particle will penetrate in this region in the $x$-direction upto a distance $d$ equal to

A proton (or charged particle) moving with velocity $v$ is acted upon by electric field $E$ and magnetic field $B$. The proton will move undeflected if