If a particle takes $t$ second less and acquires a velocity of $v \ ms^{^{-1}}$ more in falling through the same distance (starting from rest) on two planets where the accelerations due to gravity are $2 \,\, g$ and $8 \,\,g$ respectively then $v=$
$v = 2gt$
$v = 4gt$
$v = 5 gt$
$v = 16 gt$
A man moves in an open field such that after moving $10 \,m$ on a straight line, he makes a sharp turn of $60^{\circ}$ to his left. The total displacement just at the start of $8^{\text {th }}$ turn is equal to ........$m$
A particle starts from origin at $t=0$ with a velocity $5.0 \hat{ i }\; m / s$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3.0 \hat{ i }+2.0 \hat{ j })\; m / s ^{2} .$
$(a)$ What is the $y$ -coordinate of the particle at the instant its $x$ -coordinate is $84 \;m$ ?
$(b)$ What is the speed of the particle at this time?
A projectile is fired from horizontal ground with speed $v$ and projection angle $\theta$. When the acceleration due to gravity is $g$, the range of the projectile is $d$. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is $g^{\prime}=\frac{g}{0.81}$, then the new range is $d^{\prime}=n d$. The value of $n$ is. . . . .
A body lying initially at point $(3,7)$ starts moving with a constant acceleration of $4 \hat{i}$. Its position after $3 \,s$ is given by the co-ordinates ..........
The figure shows a velocity-time graph of a particle moving along a straight line Identify the region in which the rate of change of velocity $\left| {\frac{{\Delta \vec v}}{{\Delta t}}} \right|$ of the particle is maximum