જો $n(U)$ = $600$ , $n(A)$ = $100$ , $n(B)$ = $200$ અને $n(A \cap B )$ = $50$ હોય તો $n(\bar A \cap \bar B )$ =
($U$ એ સાર્વતિક ગણ અને $A$ અને $B$ એ ગણ $U$ ના ઉપગણો છે)
$300$
$350$
$250$
$200$
$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. $(A \cup B)^{\prime}$ મેળવો
પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો : $\{x: x+5=8\}$
$U=\{1,2,3,4,5,6\}, A=\{2,3\}$ અને $B=\{3,4,5\}.$ $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ શોધો અને તે પરથી બતાવો કે $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}.$
નીચેના દરેક માટે યોગ્ય વેનઆકૃતિ દોરો :
$(A \cup B)^{\prime}$
ખાલી જગ્યા પૂરો : $A \cap A^{\prime}=\ldots$