If $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ for $x \ne 0,y \ne 0$ then $D$ is
divisible by $x$ but not $y$
divisible by $y$ but not $x$
divisible by neither $x$ nor $y$
divisible by both $x$ and $y$
If $A, B, C$ be the angles of a triangle, then $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
Consider the system of equations
$ x-2 y+3 z=-1 $ ; $ -x+y-2 z=k $ ; $ x-3 y+4 z=1$
$STATEMENT -1$ : The system of equations has no solution for $\mathrm{k} \neq 3$. and
$STATEMENT - 2$ : The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & \mathrm{k} \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $\mathrm{k} \neq 3$.
If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $