If $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ for $x \ne 0,y \ne 0$ then $D$ is

  • [AIEEE 2007]
  • A

    divisible by $x$ but not $y$

  • B

    divisible by $y$ but not $x$

  • C

    divisible by neither $x$ nor $y$

  • D

    divisible by both $x$ and $y$

Similar Questions

The determinant $\left| {\begin{array}{*{20}{c}}{\cos \,\,(\theta \, + \,\phi )}&{ - \,\sin \,\,(\theta \, + \,\phi )}&{\cos \,2\phi }\\{\sin \,\theta }&{\cos \,\theta }&{\sin \,\phi }\\{ - \,\cos \,\theta }&{\sin \,\theta }&{\cos \,\phi }\end{array}} \right|$ is :

If $A, B, C$  be the angles of a triangle, then $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $

Consider the system of equations

$ x-2 y+3 z=-1 $ ; $ -x+y-2 z=k $ ; $ x-3 y+4 z=1$

$STATEMENT -1$ : The system of equations has no solution for $\mathrm{k} \neq 3$. and

$STATEMENT - 2$ : The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & \mathrm{k} \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $\mathrm{k} \neq 3$.

  • [IIT 2008]

If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
  {\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\ 
  {\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\ 
  {\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)} 
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to

$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $