If $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, then $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=

  • A

    $\Delta $

  • B

    $k\Delta $

  • C

    $3k\Delta $

  • D

    ${k^3}\Delta $

Similar Questions

The value of $\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ is

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is

If $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=$ $Ax ^{3}+ Bx ^{2}+ Cx + D ,$ then $B + C$ is equal to

  • [JEE MAIN 2020]

Prove that

$\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$

Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
  1&1&1 \\ 
  2&b&c \\ 
  4&{{b^2}}&{{c^2}} 
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval

  • [JEE MAIN 2019]