If $a,\,b,\,c$ are in $G.P.$, then
$a({b^2} + {a^2}) = c({b^2} + {c^2})$
$a({b^2} + {c^2}) = c({a^2} + {b^2})$
${a^2}(b + c) = {c^2}(a + b)$
None of these
Let ${a_1},{a_2}...,{a_{10}}$ be a $G.P.$ If $\frac{{{a_3}}}{{{a_1}}} = 25,$ then $\frac {{{a_9}}}{{{a_{ 5}}}}$ equal
If the first term of a $G.P.$ be $5$ and common ratio be $ - 5$, then which term is $3125$
Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality
$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$
holds for some positive integer $n$, is. . . . . . .
If the product of three consecutive terms of $G.P.$ is $216$ and the sum of product of pair-wise is $156$, then the numbers will be
The sum to infinity of the following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$, will be