If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then
$S = n\,A$
$A = n\,S$
$A = S$
None of these
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be
Let $a_{1}, a_{2} \ldots, a_{n}$ be a given $A.P.$ whose common difference is an integer and $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50,$ then the ordered pair $\left( S _{ n -4}, a _{ n -4}\right)$ is equal to
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .
If the sum of the roots of the equation $a{x^2} + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then $b{c^2},\;c{a^2},\;a{b^2}$ will be in
A manufacturer reckons that the value of a machine, which costs him $Rs.$ $15625$ will depreciate each year by $20 \% .$ Find the estimated value at the end of $5$ years.