If $R \subset A \times B$ and $S \subset B \times C\,$ be two relations, then ${(SoR)^{ - 1}} = $
${S^{ - 1}}o{R^{ - 1}}$
${R^{ - 1}}o{S^{ - 1}}$
$SoR$
$RoS$
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then
Let $A =\{1,2,3,4,5,6,7\}$. Then the relation $R =$ $\{( x , y ) \in A \times A : x + y =7\}$ is
If $R$ is an equivalence relation on a Set $A$, then $R^{-1}$ is not :-
Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$
Show that each of the relation $R$ in the set $A=\{x \in Z: 0 \leq x \leq 12\},$ given by $R =\{( a , b ): a = b \}$ is an equivalence relation. Find the set of all elements related to $1$ in each case.