If $x=5+2 \sqrt{6},$ then find the value of $x^{2}+\frac{1}{x^{2}}$ and $x^{3}+\frac{1}{x^{3}}$
Hint $:\left(x+\frac{1}{x}\right)^{2}=x^{2}+2+\frac{1}{x^{2}}$ and $\left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3(x)\left(\frac{1}{x}\right)\left(x+\frac{1}{x}\right)$
$x=5+2 \sqrt{6} \quad$ (Given)
$\therefore \frac{1}{x}=\frac{1}{5+2 \sqrt{6}}$
$=\frac{1}{5+2 \sqrt{6}} \times \frac{5-2 \sqrt{6}}{5-2 \sqrt{6}}$
$=\frac{1[5-2 \sqrt{6}]}{(5)^{2}-(2 \sqrt{6})^{2}}$
$=\frac{5-2 \sqrt{6}}{25-24}$
$=5-2 \sqrt{6}$
$\therefore x+\frac{1}{x}=(5+2 \sqrt{6})+(5-2 \sqrt{6})=10$
Now, $x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2$
$=(10)^{2}-2=100-2=98$
$x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)^{3}-3(x)\left(\frac{1}{x}\right)\left(x+\frac{1}{x}\right)$
$=(10)^{3}-3(10)$
$=1000-30=970$
State whether each of the following statements is true or false
$(-1)^{11}=-1$
Show that $0 . \overline{142857}=\frac{1}{7}$
Simplify the following:
$\frac{2 \sqrt{3}}{3}-\frac{\sqrt{3}}{6}$
Simplify the following expressions
$(\sqrt{11}-\sqrt{3})^{2}$
State whether each of the following statements is true or false
$(-5)^{2}=-25$