If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively
$F, T$
$T, T$
$F, F$
$T,F$
$(p\rightarrow q) \leftrightarrow (q \vee ~ p)$ is
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.
The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow q ]$ is
Which of the following is a contradiction
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.