If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

  • A

    ${{{\vec v}_1}}$ is parallel to ${{{\vec v}_2}}$

  • B

    ${{{\vec v}_1} = {{\vec v}_2}}$

  • C

    $\left| {{{\vec v}_1}} \right| = \left| {{{\vec v}_2}} \right|$

  • D

    ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are mutually perpendicular

Similar Questions

Two forces of magnitude $8 \,N$ and $15 \,N$ respectively act at a point. If the resultant force is $17 \,N$, the angle between the forces has to be .......

If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then  $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.

The resultant force of $5 \,N$ and $10 \,N$ can not be ........ $N$

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$