If $P \Rightarrow \left( {q \vee r} \right)$ is false, then the truth values of $p, q, r$ are respectively
$F, T, T$
$T, F, F$
$T, T, F$
$F, F, F$
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
The statement "If $3^2 = 10$ then $I$ get second prize" is logically equivalent to
The negation of the statement
"If I become a teacher, then I will open a school", is
Which of the following is a contradiction
The statment $ \sim \left( {p \leftrightarrow \sim q} \right)$ is