If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to
$2$
$5$
$3$
$1$
Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to
Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.