If $1 + {x^4} + {x^5} = \sum\limits_{i = 0}^5 {{a_i}\,(1 + {x})^i,} $ for all $x$ in $R,$ then $a_2$ is

  • [JEE MAIN 2014]
  • A

    $-4$

  • B

    $6$

  • C

    $-8$

  • D

    $10$

Similar Questions

The coefficient of $x^{7}$ in the expression $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ is

  • [JEE MAIN 2020]

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [AIEEE 2002]

If the coefficients of $x^2$ and $x^3$ are both zero, in the expansion of the expression $(1 + ax + bx^2) (1 -3x)^{t5}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to

  • [JEE MAIN 2019]

If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is

  • [JEE MAIN 2019]