If $\cos ec\,\theta  = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to

  • [JEE MAIN 2014]
  • A

    $\sqrt {\frac{p}{q}} $

  • B

    $\sqrt {\frac{q}{p}} $

  • C

    $\sqrt {pq} $

  • D

    $pq$

Similar Questions

Number of solutions of $8cosx$ = $x$ will be 

If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $

  • [IIT 2004]

The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -

If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$