If $P = \frac{{{A^3}}}{{{B^{5/2}}}}$ and $\Delta A$ is absolute error in $A$ and $\Delta B$ is absolute error in $B$ then absolute error $\Delta P$ in $P$ is
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} + \frac{5}{2}\frac{{\Delta B}}{B}} \right)$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{A} - \frac{5}{2}\frac{{\Delta B}}{B}} \right)P$
$\Delta P = \pm \left( { 3 \frac{{\Delta A}}{B} - \frac{5}{2}\frac{{\Delta B}}{A}} \right)P$
The values of a number of quantities are used in a mathematical formula. The quantity that should be most precise and accurate in measurement is the one
A public park, in the form of a square, has an area of $(100 \pm 0.2)\; m ^2$. The side of park is ............ $m$
The dimensional formula for a physical quantity $x$ is $\left[ M ^{-1} L ^{3} T ^{-2}\right]$. The errors in measuring the quantities $M , L$ and $T$ respectively are $2 \%, 3 \%$ and $4 \%$. The maximum percentage of error that occurs in measuring the quantity $x$ is
In an experiment, mass of an object is measured by applying a known force on it, and then measuring its acceleration. If in the experiment, the measured values of applied force and the measured acceleration are $F=10.0 \pm 0.2 \,N$ and $a=1.00 \pm 0.01 \,m / s ^2$, respectively. Then, the mass of the object is ............... $kg$
Zero error of an instrument introduces