If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ is
$1$
$-1$
$2$
$0$
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
The number of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is
Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$