If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

  • A

    $1$

  • B

    $-1$

  • C

    $2$

  • D

    $0$

Similar Questions

General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is

  • [IIT 1996]

The number of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is

  • [JEE MAIN 2021]

Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is

  • [KVPY 2016]

If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be

Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$