If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-

  • A

    $4/9$

  • B

    $9/4$

  • C

    $3/2$

  • D

    None of these

Similar Questions

If the mean and variance of eight numbers $3,7,9,12,13,20, x$ and $y$ be $10$ and $25$ respectively, then $\mathrm{x} \cdot \mathrm{y}$ is equal to

  • [JEE MAIN 2020]

Suppose values taken by a variable $x$ are such that $a \le {x_i} \le b$, where ${x_i}$ denotes the value of $x$ in the $i^{th}$ case for $i = 1, 2, ...n.$ Then..

The mean and standard deviation of marks obtained by $50$ students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject  Mathematics Physics Chemistty
Mean $42$ $32$ $40.9$
Standard deviation $12$ $15$ $20$

Which of the three subjects shows the highest variability in marks and which shows the lowest?

The data is obtained in tabular form as follows.

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five of the observations are $2,4,10,12,14 .$ Find the remaining two observations.