Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $

  • A

    $17$

  • B

    $9$

  • C

    $11$

  • D

    $3$

Similar Questions

Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)

Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\} .$ Find $A^{\prime}$

If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:

$D=\{f, g, h, a\}$

Let $A$ and $B$ be two sets then $(A \cup B)' \cup (A' \cap B)$ is equal to

If $A$ and $B$ are two sets, then $A \cap (A \cup B)'$ is equal to