Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $

  • A

    $17$

  • B

    $9$

  • C

    $11$

  • D

    $3$

Similar Questions

If $n(U)$ = $600$ , $n(A)$ = $100$ , $n(B)$ = $200$ and $n(A \cap  B )$ = $50$, then $n(\bar A  \cap \bar B )$ is 

($U$ is universal set and $A$ and $B$ are subsets of $U$)

If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to

If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:

$C=\{a, c, e, g\}$

Fill in the blanks to make each of the following a true statement :

${{\mathop{\rm U}\nolimits} ^\prime } \cap A =  \ldots $

Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to