Given $\left| {{\vec A_1}} \right| = 2,\,\left| {{\vec A_2}} \right| = 3$ and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 3$. Find the value or $\left| {\left( {{{\vec A}_1} + 2{{\vec A}_2}} \right) \times \left( {3{{\vec A}_1} - 4{{\vec A}_2}} \right)} \right|$
$64$
$60$
$62$
$61$
State and explain the characteristics of vector product of two vectors.
If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is
Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$
colum $I$ | colum $II$ |
$(A)$ $A \cdot B =| A \times B |$ | $(p)$ $\theta=90^{\circ}$ |
$(B)$ $A \cdot B = B ^2$ | $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$ |
$(C)$ $|A+B|=|A-B|$ | $(r)$ $A=B$ |
$(D)$ $|A \times B|=A B$ | $(s)$ None |