From a circular disc of radius $R$, a square is cut out with a radius as its diagonal. The center of mass of remainder part is at a distance (from the centre)

824-757

  • A

    $\frac{R}{{(4\pi  - 2)}}$

  • B

    $\frac{R}{{2\pi }}$

  • C

    $\frac{R}{{(\pi  - 2)}}$

  • D

    $\frac{R}{{(2\pi  - 2)}}$

Similar Questions

Obtain the general expression of centre of mass for distributed $n$ particles of system in three dimension. 

For a body, centre of volume is defined as $\frac{{\int {r.dV} }}{{\int {dV} }}$ over complete body, where $dV$ is small volume of body and $\vec r$ is. position vector of that small volume from origin

The distance between the carbon atom and the oxygen atom in a carbon monoxide molecule is $1.1\ \mathring A $.  Given, mass of carbon atom is $12\ a.m.u.$ and mass of oxygen atom is $16\ a.m.u.$, calculate the position of the center of mass of the carbon monoxide molecule

A square shaped hole of side $l=\frac{a}{2}$ is carved out at a distance $d =\frac{ a }{2}$ from the centre $'O'$ of a uniform circular disk of radius $a$. If the distance of the centre of mass of the remaining portion from $O$ is $-\frac{a}{X},$ value of $X$ (to the nearest integer) is.......

  • [JEE MAIN 2020]

The centre of mass of a body