For the reaction,
$2{N_2}{O_5}\, \to \,4N{O_2}\, + \,{O_2}$
the rate of reaction is
$\frac{1}{2}\frac{d}{{dt}}[{N_2}{O_5}]$
${2}\frac{d}{{dt}}[{N_2}{O_5}]$
$\frac{1}{4}\frac{d}{{dt}}[{N}{O_2}]$
$4\frac{d}{{dt}}[N{O_{\,2}}]$
The rate constant for the reaction $2N_2O_5 \to 4NO_2 + O_2$ is $3.0\times10^{-5}\, sec^{-1}$. If rate is $2.40\times10^{-5}\, M\, sec^{-1}$, then the concentration of $N_2O_5$ (in $M$) is ?
Calculate the overall order of a reaction which has the rate expression
$(a)$ Rate $=k[ A ]^{1 / 2}[ B ]^{3 / 2}$
$(b)$ Rate $=k[ A ]^{3 / 2}[ B ]^{-1}$
Write differential rate expression of following reaction and give its order of reaction:
$CHCl _{3}+ Cl _{2} \rightarrow CCl _{4}+ HCl$
$CH _{3} COOC _{2} H _{5}+ H _{2} O \rightarrow CH _{3} COOH + C_2H_5OH$
Half life of a reaction is found to be inversely proportional to the cube of its initial concentration. The order of reaction is
Consider the following data for the given reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$ . The order of the reaction is................
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |