For a reaction $2A + B \to $ Products, doubling the initial concentration of both the reactants increases the rate by a factor of $8$, and doubling the concentration of $+B$  alone doubles the rate. The rate law for the reaction is

  • A

    $\gamma = k[A]{[B]^2}$

  • B

    $\gamma = k{[A]^2}[B]$

  • C

    $\gamma = k[A][B]$

  • D

    $\gamma = k{[A]^2}{[B]^2}$

Similar Questions

The rate law of the reaction $A + 2B \to $Product is given by $\frac{{d[dB]}}{{dt}} = k[{B^2}]$. If $ A$  is taken in excess, the order of the reaction will be

$A_2 + 2\,B \to 2\,AB$

$[A_2]$ $[B]$ ${-d\,[A_2]/dt}$
$0.1$ $0.2$ $1 \times {10^{ - 2}}\,M{s^{ - 1}}$
$0.2$ $0.2$ $2 \times {10^{ - 2}}\,M{s^{ - 1}}$
$0.2$ $0.4$ $8 \times {10^{ - 2}}\,M{s^{ - 1}}$

Order of reaction w.r.t. $A_2$ and $B$ are respectively

Which one of the following statements is wrong

The hypothetical reaction : $2A + B \to C + D$ is catalyzed by $E$ as indicated in the possible mechanism below -

Step$-1$ : ${\text{A  +  E }} \rightleftharpoons AE$ (fast)

Step$-2$ :${\text{AE  +  A }} \to {A_2} + E$ (slow)

Step$-3$ :${{\text{A}}_2}{\text{ +  B }} \to {\text{D}}$ (fast)

what rate law best agrees with this mechanism

For the reaction $A + B \to $ products, what will be the order of reaction with respect to $A$ and $B$ ?

   Exp.    $[A]\,(mol\,L^{-1})$   $[B]\,(mol\,L^{-1})$   Initial rate    $(mol\,L^{-1}\,s^{-1})$ 
   $1.$  $2.5\times 10^{-4}$  $3\times 10^{-5}$  $5\times 10^{-4}$
   $2.$   $5\times 10^{-4}$  $6\times 10^{-5}$  $4\times 10^{-3}$
   $3.$   $1\times 10^{-3}$  $6\times 10^{-5}$  $1.6\times 10^{-2}$