For a concentrated solution of a weak electrolyte ( $K _{ eq }=$ equilibrium constant) $A _2 B _3$ of concentration ' $c$ ', the degree of dissociation " $\alpha$ ' is

  • [JEE MAIN 2023]
  • A

    $\left(\frac{ K _{ eq }}{108 c ^4}\right)^{\frac{1}{5}}$

  • B

    $\left(\frac{ K _{ eq }}{6 c ^5}\right)^{\frac{1}{5}}$

  • C

    $\left(\frac{K_{e q}}{5 c^4}\right)^{\frac{1}{5}}$

  • D

    $\left(\frac{ K _{ eq }}{25 c ^2}\right)^{\frac{1}{5}}$

Similar Questions

Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules

In $20\,\, ml \,\,0.4 \,M-HA$ solution, $80\,\, ml$ water is added. Assuming volume to be additive, the $pH$ of final solution is

$(K_a \,\,of\,\, HA = 4 \times 10^{-7} ,\, log\,2 = 0.3)$

$2\, gm$ acetic acid and $3\, gm$ sodium acetate are present in $100\, ml$. aqueous solution then what will be the $pH$ of solution if ionisation constant of acetic acid is $1.8 \times 10^{-5}$

$0.01$ moles of a weak acid $HA \left( K _{ a }=2.0 \times 10^{-6}\right)$ is dissolved in $1.0\, L$ of $0.1\, M\, HCl$ solution. The degree of dissociation of $HA$ is ............. $\times 10^{-5}$

(Round off to the Nearest Integer).

[Neglect volume change on adding $HA$. Assume degree of dissociation $<< 1]$

  • [JEE MAIN 2021]

$25$ $mL$ $0.1$ $M$ $HCl$ solution is diluted till $500$ $mL$. Calculate $pH$ of dilute solution.