Five balls marked a to $e$ are suspended using separate threads. Pairs $(b, c)$ and $(d, e)$ show electrostatic repulsion while pairs $(a, b),(c, e)$ and $(a, e)$ show electrostatic attraction. The ball marked a must be

  • A

    Negatively charged

  • B

    Positively charged

  • C

    Uncharged

  • D

    Any of the above is possible

Similar Questions

Three identical uncharged metal spheres are at the vertices of an equilateral triangle. One at a time, a small sphere is connected by a conducting wire with a large metal sphere that is charged. The center of the large sphere is in the straight line perpendicular to the plane of equilateral triangle and passing through its centre (see figure). As a result, the first small sphere acquires charge $q_1$ and second charge $q_2 (q_2 < q_1)$ . The charge that the third sphere $q_3$ will acquire is (Assume $l >> R$ , $l >> r$ , $d >> R$ , $d >> r$ )

A $2\,\mu F$ capacitor is charged as shown in the figure. The percentage of its stored energy dissipated after the switch $S$ is turned to position $2$, is.....$\%$

A $2\,\mu F$ capacitor is charged to a potential $=10\ V$ . Another $4\,\mu F$ capacitor is charged to a potential $= 20\ V$ . The two capacitors are then connected in a single loop, with the positive plate of one connected with negative plate of the other. What heat is evolved in the circuit ?.........$\mu J$

Four charges are placed at the circumference of a dial clock as shown in figure. If the clock has only hour hand, then the resultant force on a charge $q_0$ placed at the centre, points in the direction which shows the time as:

Consider a cube of uniform charge density $\rho$. The ratio of electrostatic potential at the centre of the cube to that at one of the corners of the cube is

  • [KVPY 2016]