Find the following products:
$\left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)$
$\left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)=\left(\frac{x}{y}+2 y\right)\left\{\left(\frac{x}{2}\right)^{2}-\left(\frac{x}{2}\right)(2 y)+(2 y)^{2}\right\}$
$=\left(\frac{x}{2}\right)^{3}+(2 y)^{3} \quad\left[\because(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3}\right]$
$=\frac{x^{3}}{8}+8 y^{3}$
Find the value of the polynomial $3 x^{3}-4 x^{2}+7 x-5,$ when $x=-3$
Factorise
$6 x^{3}+7 x^{2}-14 x-15$
Verify whether $3$ and $7$ are zeros of the polynomial $x^{2}-5 x-14$ or not.
Evaluate the following products without multiplying directly
$103 \times 105$
Which of the following expressions are polynomials in one variable and which are not $?$ State reason for your answer. If the given expression is a polynomial, state whether it is a polynomial in one variable or not
$x^{2}-8 x+15$