Find the cocfficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
$T_{n+1}=^{n} C_{r} a^{n-r} b^{r}$
Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{th}$ term of the expansion $(a-2 b)^{12},$ we obtain
${T_{r + 1}} = {\,^{12}}{C_r}{(a)^{12 - r}}{( - 2b)^r} = {\,^{12}}{C_r}{( - 2)^r}{(a)^{12 - r}}{(b)^r}$
Comparing the indices of a and $b$ in $a^{5} b^{7}$ in $T_{r+1},$
We obtain $r=7$
Thus, the coefficient of $a^{5} b^{7}$ is
${\,^{12}}{C_7}{( - 2)^7} = \frac{{12!}}{{7!5!}} \cdot {2^7} = \frac{{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}}{{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!}} \cdot {( - 2)^7}$
$ = - (792)(128) = - 101376$
Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is
The smallest natural number $n,$ such that the coefficient of $x$ in the expansion of ${\left( {{x^2}\, + \,\frac{1}{{{x^3}}}} \right)^n}$ is $^n{C_{23}}$ is
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2x^3)$ ${\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
The term independent of $x$ in ${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ is
The expression $[x + (x^3-1)^{1/2}]^5 + [x - (x^3-1)^{1/2}]^5$ is a polynomial of degree :