Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis

  • A

    ${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {22} }}{4}} \right)$

  • B

    ${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$

  • C

    ${\sin ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$

  • D

    ${\sin ^{ - 1}}\,\left( {\frac{4}{{\sqrt {26} }}} \right)$

Similar Questions

Dot product of two mutual perpendicular vector is

If $\overrightarrow{ P }=3 \hat{ i }+\sqrt{3} \hat{ j }+2 \hat{ k }$ and $\overrightarrow{ Q }=4 \hat{ i }+\sqrt{3} \hat{ j }+2.5 \hat{ k }$ then, The unit vector in the direction of $\overrightarrow{ P } \times \overrightarrow{ Q }$ is $\frac{1}{x}(\sqrt{3} \hat{i}+\hat{j}-2 \sqrt{3} \hat{k})$. The value of $x$ is

  • [JEE MAIN 2023]

If $F _1$ and $F _2$ are two vectors of equal magnitudes $F$ such that $\left| F _1 \cdot F _2\right|=\left| F _1 \times F _2\right|$, then $\left| F _1+ F _2\right|$ equals to

Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is

$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$