Find :
$(i)$ $64^{\frac{1}{2}}$
$(ii)$ $32^{\frac{1}{5}}$
$(iii) $ $125^{\frac{1}{3}}$
$(i)$ $(64)^{\frac{1}{2}}=\left(8^{2}\right)^{\frac{1}{2}}=8^{2 \times \frac{1}{2}}=8$
$(ii)$ $32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}}=2^{5 \times \frac{1}{5}}=2^{1}=2$
$(iii)$ $125^{\frac{1}{3}}=\left(5^{3}\right)^{\frac{1}{3}}=5^{3 \times \frac{1}{3}}=5$
Locate $\sqrt 3$ on the number line.
Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.
Add $2 \sqrt{2}+5 \sqrt{3}$ and $\sqrt{2}-3 \sqrt{3}$
Visualize the representation of $5.3 \overline{7}$. on the number line upto $5$ decimal places, that is, up to $5.37777$.
Locate $\sqrt 2$ on the number line.