Fill the blank :
$(i)$ Static charge produces ...... field around it.(Electric, Magnetic)
$(ii)$ Moving charge produces ...... field around it.
The dimension of the magnetic field intensity $B$ is
An electron moves with speed $2 \times {10^5}\,m/s$ along the positive $x$-direction in the presence of a magnetic induction $B = \hat i + 4\hat j - 3\hat k$ (in $Tesla$) The magnitude of the force experienced by the electron in Newton's is (charge on the electron =$1.6 \times {10^{ - 19}}C)$
If a positive ion is moving, away from an observer with same acceleration, then the lines of force of magnetic induction will be
A moving charge will gain energy due to the application of
An electron moves through a uniform magnetic field $\vec{B}=B_0 \hat{i}+2 B_0 \hat{j} T$. At a particular instant of time, the velocity of electron is $\overrightarrow{\mathrm{u}}=3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}$. If the magnetic force acting on electron is $\vec{F}=5 e\hat kN$, where $e$ is the charge of electron, then the value of $\mathrm{B}_0$ is ____$\mathrm{T}$.