Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}=(4 a)^{3}-(3 b)^{3}-3(4 a)(3 b)[4 a-3 b]$

                                                                    $=(4 a-3 b)^{3}$                $[$ Using Identity $VII]$

                                                                   $=(4 a-3 b)(4 a-3 b)(4 a-3 b)$

Similar Questions

Use suitable identities to find the products : $(x+4)(x+10)$

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :  $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.

Evaluate using suitable identities : $(104)^{3}$