Factorise : $3 x^{2}-x-4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

 $3 x^{2}-x-4$

We have  $a =3$, $b =-1$ and $c =-4$ 

$\therefore  l+ m =-1 $ and $lm =3 \times(-4)=-12$

$\therefore $ $ l=-4$  and  $m =3 $

Now,          $3 x ^{2}- x -4=3 x ^{2}-4 x +3 x -4$

$=x(3 x-4)+1(3 x-4)=(3 x-4)(x+1)$

Thus, $3 x^{2}-x-4=(3 x-4)(x+1)$

Similar Questions

Divide $p(x)$ by $g(x)$, where $p(x) = x + 3x^2 -1$ and $g(x) = 1 + x$.

Give one example each of a binomial of degree $35 $, and of a monomial of degree $100 $.

Find the following products using appropriate identities :

$(i) $ $ (x + 3) (x + 3)$

$(ii)$ $(x -3) (x + 5)$

Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $3 \sqrt{t}+t \sqrt{2}$

Expand each of the following, using suitable identities : $(3 a-7 b-c)^{2}$