Divide the polynomial  $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By long division, we have :

$\overset{3{{x}^{3}}-{{x}^{2}}-x-4}{\mathop{\begin{align}
  & x-1\sqrt{\begin{align}
  & 3{{x}^{4}}-4{{x}^{3}}-3x-1 \\ 
 & 3{{x}^{4}}-3{{x}^{3}} \\ 
\end{align}} \\ 
 & \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ 
\end{align}}}\,$

             $-{{x}^{3}}-3x-1$

             $\mp \,\,{{x}^{3}}\,\,\pm \,\,\,{{x}^{2}}$

          $\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

              $-x^{2}-3 x-1$

              $\mp \,{{x}^{2}}\pm \,\,x$

           $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

              $-4 x-1$

              $\mp \,\,4x\pm 1$

              $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

                       $-5$

Here, the remainder is $-5 .$ Now, the zero of $x-1$ is $1 .$ So, putting $x=1$ in $p(x),$ we see that

$p(1)=3(1)^{4}-4(1)^{3}-3(1)-1$

$=3-4-3-1$

$=-\,5,$ which is the remainder.

Similar Questions

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=3 x+1, \,\,x=-\,\frac{1}{3}$

Factorise : $49 a^{2}+70 a b+25 b^{2}$

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}+3 x^{2}+3 x+1$,  $g(x)=x+2$.

Find the value of the polynomial $5x -4x^2+ 3$ at $x = -\,1$.

Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$