Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.
By long division, we have :
$\overset{3{{x}^{3}}-{{x}^{2}}-x-4}{\mathop{\begin{align}
& x-1\sqrt{\begin{align}
& 3{{x}^{4}}-4{{x}^{3}}-3x-1 \\
& 3{{x}^{4}}-3{{x}^{3}} \\
\end{align}} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
\end{align}}}\,$
$-{{x}^{3}}-3x-1$
$\mp \,\,{{x}^{3}}\,\,\pm \,\,\,{{x}^{2}}$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-x^{2}-3 x-1$
$\mp \,{{x}^{2}}\pm \,\,x$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-4 x-1$
$\mp \,\,4x\pm 1$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-5$
Here, the remainder is $-5 .$ Now, the zero of $x-1$ is $1 .$ So, putting $x=1$ in $p(x),$ we see that
$p(1)=3(1)^{4}-4(1)^{3}-3(1)-1$
$=3-4-3-1$
$=-\,5,$ which is the remainder.
Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$
Find the zero of the polynomial : $p(x)=c x+d, \,c \neq 0, \,c,\,d$ are real numbers.
Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:35{y^2}+ 13y - 12}$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$
Factorise of the following : $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$