Divide the polynomial  $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By long division, we have :

$\overset{3{{x}^{3}}-{{x}^{2}}-x-4}{\mathop{\begin{align}
  & x-1\sqrt{\begin{align}
  & 3{{x}^{4}}-4{{x}^{3}}-3x-1 \\ 
 & 3{{x}^{4}}-3{{x}^{3}} \\ 
\end{align}} \\ 
 & \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ 
\end{align}}}\,$

             $-{{x}^{3}}-3x-1$

             $\mp \,\,{{x}^{3}}\,\,\pm \,\,\,{{x}^{2}}$

          $\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

              $-x^{2}-3 x-1$

              $\mp \,{{x}^{2}}\pm \,\,x$

           $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

              $-4 x-1$

              $\mp \,\,4x\pm 1$

              $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

                       $-5$

Here, the remainder is $-5 .$ Now, the zero of $x-1$ is $1 .$ So, putting $x=1$ in $p(x),$ we see that

$p(1)=3(1)^{4}-4(1)^{3}-3(1)-1$

$=3-4-3-1$

$=-\,5,$ which is the remainder.

Similar Questions

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$

Find the zero of the polynomial : $p(x)=c x+d, \,c \neq 0, \,c,\,d$ are real numbers.

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:35{y^2}+ 13y - 12}$

Classify the following as linear, quadratic and cubic polynomials :

$(i)$ $x^{2}+x$

$(ii)$ $x-x^{3}$

$(iii)$ $y+y^{2}+4$

Factorise of the following :  $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$