Derive the equation of ionization constants ${K_a}$ of weak acids $HX$.
A weak acid $HX$ that is partially ionized in the aqueous solution. The equilibrium can be expressed by :
$\text { Equilibrium : } \text { Concentration M : } \mathrm{HX}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{X}_{\text {(aq) }}^{-} $
$\text {Change in conce. : } -\mathrm{C} \alpha \ \ 0 \ \ \ 0 $
$ \text { Concentration at } (\mathrm{C}-\mathrm{C} \alpha) (0+\mathrm{C} \alpha) (0+\mathrm{C} \alpha) $
$ \text { Equili. in molarity : } =\mathrm{C}(1-\alpha) \mathrm{C} \alpha \mathrm{C} \alpha $
$ =\mathrm{C} \alpha =\mathrm{C} \alpha$
where, $\alpha=$ Extent upto which $\mathrm{HX}$ is ionized into ions.
Suppose, initial concentration of undissociated acid $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$
$\therefore \quad$ Ionized $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$
At equilibrium $[\mathrm{HX}]=(\mathrm{C}-\mathrm{C} \alpha)=\mathrm{C}(1-\alpha)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{X}^{-}\right]=\mathrm{C} \alpha \mathrm{M}$
The equilibrium constant for the above discussed acid-dissociation equilibrium:
$\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad \therefore \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
In $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ constant $=\mathrm{K}^{\prime}$ So,
$\quad \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K} \times \mathrm{K}^{\prime}$ new constant $\mathrm{K}_{a}$
where, $\mathrm{K}_{a}=$ Ionization constant of weak acid.
$\therefore \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HX}]} \ldots .($ Eq. $-{i})$
$\therefore \mathrm{K}_{a}=\frac{(\mathrm{C} \alpha)(\mathrm{C} \alpha)}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{\left(1-\alpha^{2}\right)} \ldots . .( Eq.-ii )$
Above equation-$(ii)$ is used for calculation of ionization constant of weak acid $HX$.
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
A weak base $MOH$ of $0.1\,N$ concentration shows a $pH$ value of $9$ . What is the percentage degree of ionization of the base ? .......$\%$
The hydrogen ion concentration of a $0.006\,M$ benzoic acid solution is $({K_a} = 6 \times {10^{ - 5}})$
The dissociation constants of two acids $HA_1$ and $HA_2$ are $3.0 \times 10^{-4}$ and $1.8 \times 10^{-5}$ respectively. The relative strengths of the acids will be
Explain ionization and ionization constant in di and polyprotic acid.