Current through $ABC$ and $A'B'C'$ is $I$. What is the magentic field at $P$ ? $BP = PB' = r$ (Here $C'B'PBC$ are collinear)
$\frac{1}{{4\pi }}\frac{{2I}}{r}$
$\frac{{{\mu _0}}}{{4\pi }}\left( {\frac{{2I}}{r}} \right)$
$\frac{{{\mu _0}}}{{4\pi }}\left( {\frac{{I}}{r}} \right)$
zero
Find out magnetic field at point $O$ ?
The magnetic field at the origin due to a current element $i\,\overrightarrow {dl} $ placed at position $\vec r$ is
$(i)\,\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(ii)\,\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(iii)\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$
$(iv)\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$
A closely wound flat circular coil of $25$ $turns$ of wire has diameter of $10\, cm$ and carries a current of $4\, ampere$. Determine the flux density at the centre of a coil
A straight wire of diameter $0.5\, mm$ carrying a current of $1\, A$ is replaced by another wire of $1\, mm$ diameter carrying the same current. The strength of magnetic field far away is
Shown in the figure is a conductor carrying a current $I$. The magnetic field intensity at the point $O$ (common centre of all the three arcs) is