Consider the points lying on a straight line joining two fixed opposite charges. Between the charges there is
No point where electric field is zero
Only one point where potential is zero
All the charges are in unstable equilibrium
Both $(a)$ and $(b)$
Two charges $3 \times 10^{-8}\; C$ and $-2 \times 10^{-8}\; C$ are located $15 \;cm$ apart. At what point on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
A thin spherical conducting shell of radius $R$ has a charge $q$ . Another charge $Q$ is placed at the centre of the shell. The electrostatic potential at a point $P$ at a distance $R/2$ from the centre of the shell is
Twenty seven drops of water of the same size are equally and similarly charged. They are then united to form a bigger drop. By what factor will the electrical potential changes.........$times$
Concentric metallic hollow spheres of radii $R$ and $4 R$ hold charges $Q _{1}$ and $Q _{2}$ respectively. Given that surface charge densities of the concentric spheres are equal, the potential difference $V ( R )- V (4 R )$ is
Assume that an electric field $\overrightarrow E = 30{x^2}\hat i$ exists in space. Then the potential difference $V_A -V_O$, where $V_O$ is the potential at the origin and $V_A$ the potential at $x = 2\, m$ is