Consider the mass-spectrometer as shown in figure. The electric field between plates is $\vec E\ V/m$ , and the magnetic field in both the velocity selector and in the deflection chamber has magnitude $B$ . Find the radius $'r'$ for a singly charged ion of mass $'m'$ in the deflection chamber 

822-4

  • A

    $\frac{{mE}}{{eB}}$

  • B

    $\frac{{m{E^2}}}{{eB}}$

  • C

    $\frac{{mE}}{{e{B^2}}}$

  • D

    $\frac{{mE}}{{B{e^2}}}$

Similar Questions

 A charged particle (electron or proton) is introduced at the origin $(x=0, y=0, z=0)$ with a given initial velocity $\overrightarrow{\mathrm{v}}$. A uniform electric field $\overrightarrow{\mathrm{E}}$ and magnetic field $\vec{B}$ are given in columns $1,2$ and $3$ , respectively. The quantities $E_0, B_0$ are positive in magnitude.

column $I$

column $II$ column $III$
$(I)$ Electron with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(i)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0^2 \hat{\mathrm{Z}}$ $(P)$ $\overrightarrow{\mathrm{B}}=-\mathrm{B}_0 \hat{\mathrm{x}}$
$(II)$ Electron with $\overrightarrow{\mathrm{v}}=\frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{y}}$ $(ii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{y}}$ $(Q)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{x}}$
$(III)$ Proton with $\overrightarrow{\mathrm{v}}=0$ $(iii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{x}}$ $(R)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{y}}$
$(IV)$ Proton with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(iv)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{x}}$ $(S)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{z}}$

($1$) In which case will the particle move in a straight line with constant velocity?

$[A] (II) (iii) (S)$    $[B] (IV) (i) (S)$   $[C] (III) (ii) (R)$   $[D] (III) (iii) (P)$

($2$) In which case will the particle describe a helical path with axis along the positive $z$ direction?

$[A] (II) (ii) (R)$   $[B] (IV) (ii) (R)$  $[C] (IV) (i) (S)$   $[D] (III) (iii)(P)$

($3$)  In which case would be particle move in a straight line along the negative direction of y-axis (i.e., more along $-\hat{y}$ )?

$[A] (IV) (ii) (S)$   $[B] (III) (ii) (P)$   $[C]$ (II) (iii) $(Q)$   $[D] (III) (ii) (R)$

  • [IIT 2017]

An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles are respectively $R_e, R_p, R_d \,$ and $\, R_\alpha$. It follows that

A charged particle is moving in a uniform magnetic field in a circular path. Radius of circular path is $R$. When energy of particle is doubled, then new radius will be

An $\alpha $ particle and a proton travel with same velocity in a magnetic field perpendicular to the direction of their velocities, find the ratio of the radii of their circular path

  • [AIIMS 2004]

This question has Statement $1$ and Statement $2$ . Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement $1$: A charged particle is moving at right angle to a static magnetic field . During the motion the kinetic energy of the charge remains unchanged.

Statement $2$: Static magnetic field exert force on a moving charge in the direction perpendicular to the magnetic field.

  • [AIEEE 2012]