Consider system of equations $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$
for $a \ne 1$ system has unique solution.
if system has no solution then $'a'$ must be $1$ .
for $a \in \left\{ {1,\frac{{ - 1 \pm \sqrt 5 }}{2}} \right\}$ , system has no solution.
for $a = \frac{{ - 1 \pm \sqrt 5 }}{2}$ , system has infinite number of solutions.
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in
Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then
$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$
$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix
$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$
$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix
$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$where $a = i,b = \omega ,c = {\omega ^2}$, then $\Delta $is equal to
Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has