Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
$\left[ {\sec 2\,,\,\sec \,1} \right]$
$\left[ {\sec 1\,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,4\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,2} \right]\, \cup \,\left[ {\sec \,1\,,\,\infty } \right)$
$\left( { - \infty \,,\,\sec \,4} \right]\, \cup \,\left[ {\sec \,2\,,\,\infty } \right)$
If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is
Let $S=\left\{ x : x \in R \text { and }(\sqrt{3}+\sqrt{2})^{ x ^2-4}+(\sqrt{3}-\sqrt{2})^{ x ^2-4}=10\right\} \text {. }$ Then $n ( S )$ is equal to
The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is