Below figures $(1)$ and $(2)$ represent lines of force. Which is correct statement
Figure $(1)$ represents magnetic lines of force
Figure $(2)$ represents magnetic lines of force
Figure $(1)$ represents electric lines of force
Both figure $(1)$ and figure $(2)$ represent magnetic lines of force
Two similar bar magnets $P $ and $Q$ , each of magnetic moment $M,$ are taken, If $P$ is cut along its axial line and $Q$ is cut along its equatorial line, all the four pieces obtained have
Two bar magnets having same geometry with magnetic moments $M$ and $2 M$, are firstly placed in such a way that their similar poles are same side then its time period of oscillation is $T_{1}$. Now the polarity of one of the magnet is reversed then time period of oscillation is $T_{2},$ then
Magnetic intensity for an axial point due to a short bar magnet of magnetic moment $M$ is given by
A small magnetised needle $P$ placed at point $O$ and the arrow shows the direction of its magnetic moment. The other arrow show different position (and orientation) of another identical magnets $(Q)$. In which configuration system is not in equilibrium
The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of $20 \mathrm{~cm}$ from its center is $1.5 \times 10^{-5} \ \mathrm{Tm}$. The magnetic moment of the dipole is___________ $\mathrm{Am}^2$. (Given : $\frac{\mu_0}{4 \pi}=10^{-7} \ \mathrm{TmA}^{-1}$ )