A projectile crosses two walls of equal height $H$ symmetrically as shown If the horizontal distance between the two walls is $d = 120\,\, m$, then the range of the projectile is ........ $m$
The position coordinates of a projectile projected from ground on a certain planet (with no atmosphere) are given by $y=\left(4 t-2 t^2\right) m$ and $x =(3 t)$ metre, where $t$ is in second and point of projection is taken as origin. The angle of projection of projectile with vertical is .........
A ball of mass $m$ is thrown vertically upward. Another ball of mass $2\,m$ is thrown an angle $\theta$ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $\frac{1}{x}$. The value of $x$ is $.....$
A ball is thrown at an angle $\theta $ and another ball is thrown at an angle $(90^o -\theta )$ with the horizontal from the same point with same speed $40\,ms^{-1}$. The second ball reaches $50\,m$ higher than the first ball. Find their individual heights?
For angles of projection of a projectile at angle $(45^o +\theta)$ and $(45^o -\theta ) $ , the horizontal range described by the projectile are in the ratio of