Assertion : The electrostatic force between the plates of a charged isolated capacitor decreases when dielectric fills whole space between plates.
Reason : The electric field between the plates of a charged isolated capacitance increases when dielectric fills whole space between plates.
If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
If Assertion is correct but Reason is incorrect.
If Assertion is incorrect and Reason is correct.
A parallel plate capacitor having plates of area $S$ and plate separation $d$, has capacitance $C _1$ in air. When two dielectrics of different relative permittivities $\left(\varepsilon_1=2\right.$ and $\left.\varepsilon_2=4\right)$ are introduced between the two plates as shown in the figure, the capacitance becomes $C _2$. The ratio $\frac{ C _2}{ C _1}$ is
How does the polarised dielectric modify the original external field inside it ?
What are called polar molecules and non-polar molecules ? Both are Give examples.
A dielectric slab of thickness $d$ is inserted in a parallel plate capacitor whose negative plate is at $x = 0$ and positive plate is at $x = 3d$. The slab is equidistant from the plates. The capacitor is given some charge. As one goes from $0$ to $3d$
A parallel plate capacitor has plate area $100\, m ^{2}$ and plate separation of $10\, m$. The space between the plates is filled up to a thickness $5\, m$ with a material of dielectric constant of $10 .$ The resultant capacitance of the system is $'x'$ $pF$. The value of $\varepsilon_{0}=8.85 \times 10^{-12} F \cdot m ^{-1}$ The value of $'x'$ to the nearest integer is............